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Abstract

An analytical procedure is presented, called the
modal element method, that combines numerical grid

based algorithms with eigenfunction expansions devel-

oped by separation of variables. A modal element
method is presented for solving potential flow in a
channel with two-dimensional cylindrical like obstacles.

The infinite computational region is divided into three

subdomains; the bounded finite element domain, which

is characterized by the cylindrical obstacle and the

surrounding unbounded uniform channel entrance and

exit domains. The velocity potential is represented

approximately in the grid based domain by a finite ele-
ment solution and is represented analytically by an

eigenfunction expansion in the uniform semi-infinite
entrance and exit domains. The calculated flow fields are

in excellent agreement with exact analytical solutions.

By eliminating the grid surrounding the obstacle, the
modal element method reduces the numerical grid size,

employs a more precise far field boundary condition, as

well as giving theoretical insight to the interaction of the
obstacle with the mean flow. Although the analysis

focuses on a specific geometry, the formulation is general
and can be applied to a variety of problems as seen by

a comparison to companion theories in aeroacoustics and

electromagnetics.

Introduction

Computational fluid dynamics (CFD} now plays a

major role in aeronautical research and design.
Pironneau (1989) reports that for Dassault industries

1986 was the year when the numerical budget over took

the budget for experimentation in wind tunnels. This

comparison of budgets is appropriate since both wind

tunnels and CFD analysis provide similar information

about the flow physics. Numerical grid based solutions

with color graphics and computer generated movies are

closely akin to their experimental counterparts with
smoke streamlines, shadowgraph, and schlieren photo-

graphy. Current CFD programs in aeronautics model
with incredible accuracy the flow field of whole aircraft

as well as propulsion systems and rotor dynamics

(Henne, 1990). Nevertheless, current CFD analysis does
not develop the mathematical insight into the role of

key variables and parameters that readily unfold from

exact and approximate analytical solutions. Lighthill

(1989) addressed this inherent deficiency when he stated
that it is _essential to stress the connections between

theoretical analysis on one hand and experimental

and/or CFD studies on the other."

To gain more theoretical insight in CFD problems,

the present paper presents an analytical procedure,
called the modal element method, that combines numer-

ical grid based algorithms with eigenfunction expansions

derived by separation of variables. Herein, a modal ele-

ment method is developed for solving potential flow in

an infinitely long channel with a two-dimensional cylin-

drical like obstacle present. Emphasis is on the problem

formulation. Wholly numerical finite element solutions

for the streamlines and potential lines over a cylinder in

a duct are presented in many introductory texts on

finite elements, such as Hinton and Owen (1779, p. 222)

and Segerlind (1976, p. 183), as well as advanced fluid

dynamic texts such as Chung (1978, p. 177). However,
the modal element method adds theoretical insight to

both the numerical formulation and the physical

problem. In the numerical analysis, the method will aid

judgment in choosing the grid density as well as the
accuracy of the exit boundary condition. In the flow

problem, the method will determine the physical

parameters which dictate the change of the flow

streamlinesand the potentiallines.

Although the analysisfocuseson a specificgeometry,

the formulationisquitegeneraland can be appliedto a

variety of problems as seen by a comparison to its

companion theoriesinacousticsand electromagnetics.In

CFD applications,however, singularityrequirements

introducesome differencesfrom the previouswave prop-

agation formulations.Historically,a primary reason for

developing the modal element method was to accurately

describethe radiationboundary conditionatthe compu-

tational boundary of a numerical grid. In electro-

magnetics, Chang and Mei (1976}, Lee and Cendes

(1987),and Baumeister and Kreider (1993} appliedthe
method to scatteringfrom dielectriccylinderswhile

Baumeister (1991} applied the method to electro-

magnetic propagation in ducts with surfaceirregular-

ities.In acoustics, Astley and Eversman (1981}

employed the method in duct propagation problems

while Baumeister and Kreider (1992) have applied the



techniqueto scatteringfrom softand rigidbodies.For

validation,numerical calculationsusing the modal ele-

ment method forsound propagation in a variablearea

duct with a cylindricallike obstacle show excellent

agreement with experimentalresults(Banmeister,etal.,

1983).

To illustratethe advantage ofcoupling analyticand

grid based numerical solutionsin the modal element

method, consider the problem of findingthe pressure

amplitude resultingfrom scatteringof an acousticplane

wave by a rigid cylinder.As shown in Fig. l(a), a

conventionalfinitedifferencetheory (Khan, Brown, and

Ahuja, 1986) requiresa largedense gridto resolvethe

wave likenature ofthe pressurefieldand to accurately

approximate the farfieldradiationboundary condition.

In contrast,the limitingcase ofmodal element method

forrigidbodiesrequiresonly a singlelineofelements as

shown in Fig. l(b).Figure l(c) compares the pressure

amplitude of these analyseswith the exact theoretical

resultsshown by the solid line.The modal element

method shows excellentagreement with the theorywhile

the conventional finitedifferencetheory shows some

errorbecause ofthe previouslyalludedapproximations.

The modal element method can also be extended very

easilyto higherfrequencies,asshown inFig. l(d),since

no nodes are required inthe far field.

Considering open systems as in Fig. I, the modal

element method isa gridbased numerical system that

has many advantages ofthe classicalboundary integral

methods such asthe boundary element method inacous-

tics,the panel method in aerodynamics, and the method

ofmoments in electromagnetics.These boundary inte-

gralmethods axe well suitedfor solvingthe scattering

problem discussed in Fig. 1. However, for the semi-

infiniteduct problem consideredherein,the boundary

element method requiresa closureapproximation inthe

farfieldsimilarto the standard i'miteelement method

(Brebbia, 1978, p. 80). Also, similar to the modal

element method considered herein,the finiteelement

method and the boundary element method can be com-

bined as discussedby Brebbia (1978,p. 178) but with-

out the modal element advantage of obtaining a closed

form analyticalsolution.Yet in a broader sense,the
modal element method could be considereda subset of

the boundary element method under the titleofindirect

method of analysis(Brebbia,1978, p. 2).

The motivation for adapting the modal element

method for CFD analysis herein is threefold: first, to

explicitly determine the importance of physical param-

eters by obtaining a closed form analytical solution in

part of the solution domain, second, to minimize the size
of the regions requiring numerical grids, and thirdly, to

more accurately approximate the exit boundary condi-

tion of the numerical grid. The later consideration can

be important in the directcomputation ofaerodynamic

sound from unsteady flowswhere the sound levelscan be

three orders of magnitude smaller than mean flow

variables.

In the presentpaper,l'_rstthe method ofanalysisand

domain decomposition isdiscussedfollowed by a devel-

opment of the analyticalsolution.Next, subdomain

interfaceconditionsare presentedfollowedby the f'mite

element solutionprocedure and the requirements of a

Dirichletboundary condition.The geometricmodel and

an exact solutionfor the model axe presented next fol-

lowed by resultsand comparisons that include two

example calculations.
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Nomenclature

A total dimensionless area of finite element domain

A (e) area of element e

A m modal amplitude, Eq. (14)

B+m modal amplitude, Eq. (17)

b dipole strength, Eq. (37)

c m modal amplitude, Eq. (9)

+ modal amplitude, Eq. (9)c m

F column vector, right hand side of global matrix

equation

dimensionless channel height, h#/L #

¢=--1

global matrix, Eq. (33}

wave number, Fig. 1

characteristic distance

mode number

mode number, Eq. (19}

number of elements in finite element domain

number of modal coefficients used in

eigenfunction expansion

number of grid points on interface S used in

integration, Eq. (20)

N number of nodes in finite element domain

N s number of nodes on S to resolve harmonics

N (e) local linear triangular interpolation function,

N(e)(x,y);N!e)(xj,yj)= 6id (i-- 1,2,3;5= 1,2,3)

outward unit normal vector

n normal vector



wte)

Win*

w(,)
X

x

Xin

xo

Xout

Y

Y

Yo

z

6

R I global residual error at node I

r# radius, Fig. 1

S line interface about finite element domain

Sa entrance plane

Sb exit plane

S + region exterior to S

S- region interior to S

s arc length parameter on S

U + free stream velocity

U#o normalizing velocity

W I global weight function associated with node i;

Wi(xj,yj) = 6ij (I-- 1...N; J = 1...N)

local weight function associated with node I

interface weight function, Eq. (19)

complex potential, Eq. (37)

separation function, Eq. (4)

dimensionless axial distance, x#/L #

starting position of finite element grid

axial intercept of obstacle

ending position of finite element grid

separation function, Eq. (4)

dimensionless transverse distance, y#/L #

height of obstacle

complex variable, Eq. (38)

angle between element outward normal and

positive x axis

v2 Laplace operator

5ij Kronecker delta (6ij = 1 for I = J; 5ij = 0 for

I,J)

A eigenvalue, Eq. (8)

column solution vector, Eq. (33)

_b potential

¢ stream function

Subscripts

a

b

I

Is

i

analytical solution

analytical solution

global node index in finite element domain

global node index for interface S

local element mode index

J global node index, Eq. (25)

j local element node index

Superscripts

approximate solution

# dimensional quantity

( ) average value

(e) element value

Method of Analysis

The presentstudy isconcerned with computing the

potentialflow fieldin a channel with two-dimensional

cylindricallikeobstacles,asshown in Fig. 2.A uniform

velocityprofile + "U_o Isassumed toexistfarupstream. For
inviscid and irrotationaltwo-dimensional flow, the

potentialequation governs;

V#2_b # -- 0 (I)

where # denotes a dimensional variable. For this paper

the following dimensionless variables are introduced:

x# y#
x = __ y-

L# L#

U÷#
h# U + ®

h = __ ® = _ (2)
L# U #

O

¢-
U # L #

o

The superscript ÷ indicates the direction of the velocity
in the ÷ x direction. All symbols are defined in the

nomenclature. Equation (1) becomes

(3)
V2¢ = 0

The exact shape of the obstacle is defined by an
infinite row of doublets transverse to a uniform flow

(Kirchhoff, 1985). For obstacles less than half the height
of the duct, its shape is nearly a circular cylinder. The

advantage of using this obstacle is that an exact solution
exists for validating the theoretical results. The detailed

shape of the obstacle will be full described in a later

section of this report.

The common numerical approach to this problem is

to extend the grid fax upstream and downstream of the



obstacle such that the assumption of uniform velocity is

valid, as shown in Fig. 3. Generally, a large entrance

and exit grid region must be selected. The leading edge

of the obstacle is defined by xo while the inlet and exit

positions of the grid are defined by Xin and Xout

respectively. Symmetry about the cylinder was not used

allowing the computer program to handle a greater

variety of problems.

In contrast to the conventional approach, a typical

modal element grid system is shown in Fig. 4. The

spatial domain is divided into three subdomains, the

entrance and exit analytical domains and the finite
element domain. The i'mite element domain contains a

nodal grid system that covers the region of complicated

geometry. Linear triangular elements are used and the

subdomain interface is approximated by piecewise linear

segments. In the finite element domain, an approximate
solution for the velocity potential is calculated by the

Galerkin method. In the analytical domains, which

extends to ±% an eigenfunction expansion for the

velocity potential is derived by separation of variables.

The modal element method couples the analytical

and numerical solutionsby imposing continuityon the

potential and velocity at the interfacebetween the

subdomains. This coupling resultsin a singlematrix

equation inwhich the eigenfunctioncoefficientsand the

potential at the finiteelement nodes are calculated

simultaneously,yieldinga global representationof the

potential field.Next, Eq. (3) will be solved by the

method of separation of variablesin the entrance and

exitregionsand then by the finiteelement techniquein

the gridsystem surrounding the obstacle.

AnalyticalSolution

Consider the entrance portionof the duct as shown

in Fig. 4 for x < Xin that is upstream to the duct

obstruction.Employing separationof variablesfor the

solutionof Eq. (3),

_a = X(x)Y(y) (4)

yields

1 _2X 1 _2y _k2 (5)

ax 2 y _2

The subscripta denotes the analyticalsolutionin the

entrance portion of the duct, as labeled in Fig.4.

Solving the ordinary differentialequation forY and

applying the solidwall boundary conditions,

_a

v = __ = 0 at y = 0 and y = h (6)

yields

_a = Cm cos(Ay)X(x)

where the eigenvaluesare

m_
X =__ m = 0,1,2,3, .... (8)

h

Now, solving the ordinary differential equation of X

yields (noting the double root at m = 0)

:x+ c:e hcos

+ 2+ E c:e h cos
m=l

(9)

where Mcoef, the number of coefficientsused in the

expansion,must be seta priori.From now on, the eigen-

function terms are calledmodes, as commonly used in

acoustictheory.The two separateroots have been dis-

tinguishedby a + or - superscript.For largevalues of

negative x, the upstream velocityboundary condition

requires

°Rba= O + (10)
_ X ..-.+- ao;

+ must be set to zero and Eq. (9)thus, all values of cm
becomes

Ca = U:x + : + c=e--_cos (11)

Physically,the constant co in Eq. (11) representsa

negativepotentialthatwilllaterbe shown tobe propor-
tionalto the sizeof the obstaclein the duct. The last

term in Eq. (11)representsdamped higherorder modes

that blend the distortedpotentialaround the obstacle

into the uniform potentialupstream.

For convenience,the constant co willbe pulledinto

the exponential,so that the summation begins with

m = 0 such that



- T m_ry
_=U:x + c e cos

m--O T

(12)

Also, because the damped exponentials can be very

small at the beginning of the analytical regions, the

separation constants are redefined. By introducing the

identity in the brackets [],

Mcoef m°rxio _ mfxin

_a=U: x + E Cm h e h

m=0

(13)

Deirming the constant A m as

m In

mTXin

h
e

(14)

such that

M,.,, mr(x-xJ (

m=0

(15)

Finally, the characteristic length L # isset equal to h #

so that h = 1 and F_,q. (15) simplifies to

Mcoef

_ba = U:X + E A: emr(x-xin)cOs(m_y) (161

m=O

Similarly, for the exit duct where x > Xout, the

analytical expression for the potential becomes

M,oa

¢b- U:x -{- E B: e-m_r(x-x°u')cOs(mTTy) (17)
m=0

In a typical analytical solution, the separation

constants A m and B+m axe evaluated by some ortho-

gonality condition in coordinate systems that matches

the physical boundary. The rectangular coordinate

system chosen herein obviously does not match the cir-
cular boundary of the obstacle. However, the numerical

grid system will transfer the necessary information such

that A m and B + can be conveniently determined.

Interface Conditions

At the interface S between the finite element domain

and the analytical domains, both the potential and

velocity are continuous. The local continuity of potential

 ls- -  ls- = 0 {18)

can be expressed numerically by a collocation procedure

(Lee and Cendes, 1987) or an integral weighting proce-

dure (Baumeister and Krieder, 1992}. The latter are
used here with weight functions cos(m*_), so the con-

tinuity of potential at the entrance interface Sa is

expressed by

y= 1

_S Win. [_,ba-- _b] ds = O"

y=O

W m. = cos(m*_y)

(19)

(m* = 0,1,2,. .... ,Mcoef equations)

There must be one equation for every unknown separa-

tion constant. Thus, Mcoef + 1 weight equations are
required. The superscript * designates the particular

weight index to differentiate it from the eigenvalue

index m used in Eq. (8). In contrast to FE weighted
residual theory using local weight functions, the weight

function here is global in nature acting over the whole

y domain.

Rather than take advantage of the orthogonality

conditions in Eq. (19), a completely numerical approach
has been adopted to determine equations for the Am+ in

anticipation of future code complications. It suffices to

apply a simple quadrature to obtain acceptable results

when approximating Eq. (19). Sa is divided into sub-

intervalscentered at points (Xls,Yis), which correspond

tofiniteelement boundary nodes introducedlaterin the

paper. The nodes are evenly spaced on the boundary

with the index Is.Once the number of modes Mcoef has

been assumed (based on convergence of the numerical

solution)the gridissetup so that the number of nodes

on Sa isN s >_6Mcoef to adequately resolveallthe har-

monic terms in Eq. (16).

Applying the trapezoidal rule to the chosen nodes

gives



Mptj

ZS [_ba(Xin'YI.)- _bI]C°s(m*_rYI.)AYI. = 0.

Is=l
(2o)

(m* = 0,1,2, ..... ,Mcoef equations)

where Ay is the distance between nodes except at the

two end points. At the ends, Ay is half the distance

between nodes. Thus,

1
1 -- _(61,1 + 5I,Mpt,)

AyI. = (21)
Mpt s - 1

5 = Kronecker A

By expressing@a in terms of the modal coefficients

inEq. (16),Eq. (20) can be written explicitlyas

Mcoef Mpts

A= _ cos(m_rYi )cos(m*_rYi )AYI0

m=0 it=l

Mpts

-- _¢S c°s(m*IrYI.)_bI. AYI.

Is=l
(22)

Mpto

-__ cosCm'"yO Y .
I_=l

(m*= 0,I,2,...,Mcoefequations)

Equation (22) comprises Mcoef + 1 separate difference

equations,each of which iswritten in terms of allthe

unknown coefficientsA m and the potential$1s at the

nodes on Sa.

The continuity of velocity requires that at the

interface

(23)

where n isthe outward normal. This relationshipisused

tosatisfythe naturalboundary conditionlaterrequired

in the finiteelement portionof the problem.

A similarset of equations can be written for the

outletregion coefficientsB+m.These equations are later

combined with the finiteelement equations to form a

matrix system that yields values of all the unknowns @I

values at the nodes as well as the separation constants

andB_+.

Finite Element Solution

The finiteelement domain, with total area A, is

divided into M discrete triangular elements, A {e),

e = 1,2,...,M,def']nedby N corner nodal points (xl,Yl),

I = 1,2,...,N.The cornernodes forelement area A (e')are

denoted (xie),yle)), (xle),yl')), and (x_e),y_e)).

The potentialisapproximated by a linearcombina-

tionofweight functionsWi(x,y):

N

_(x,y) = _ Wi(x,y)$ I = [W(x,y)] {_) , (24)
I=1

with [ ] representing a row vector and { } representing
a column vector. The weights have the property that

WI(Xj'YJ) = _IJ (Kronecker 5), (25)

so that the unknown nodal pressurevalues are given by

_I = ¢_(xI'YI)"

To determine {_b},apply the method of weighted

residuals.In thismethod, the residualerrorofEq. (3),

R I -- f fAWi (V. V_ )dx dy

(I = 1,2,3,...,N one residual

equation for each node I)

(26)

isset to 0 for each node I. Applying Green's vector

identity (integrationby parts) and the divergence

theorem to the integrand in Eq. (26) yieldsthe weak

formulationof Eq. (3):

Ri=ffA(_TW I • V_ )dxdy- fs(WiV_" n)ds=0.

(I -- 1,2,3,...,N )
(27)

Equation (27)isa global,ornode-oriented,formulation,

in that itprovides a differenceequation for each node

that can be used to determine {_}.

From a practicalstandpoint, though, it is more

convenient to consider a local,or element-oriented,

formulation.To develop the local formulation, write

each residualR Ias the sum of the element residuals:

6



o:,<,:
e= 1 e= 1

- s,<.,os
(I = 1,2,3,...,N) t (28)

where S (e)is the boundary of element A (e).

In the boundary integral terms in Eq. (28), itisrea-

sonable to approximate the (cont.inuous) normal deriva-

tive with its mean value over s(eJns, The key step is to

apply the continuity of velocity (Eq. (23)), which intro-

duces the eigenfunction coefficients, thus linking the

analytic solution and the finiteelement solution on the

interface.The term is transformed as follows:

S(,}NS__ I _. sjsC. nsI

= -_- s(') Js(')ns, i

ds

r w(')-{- _ S(')Js(*)FISb I ds,

(29)

Only the entrance and exit interfaces contribute, since

the normal derivative of the potential is zero along the

upper and lower channel walls and the obstacle.

If i]is the angle between the positive x axis and the

outward normal, for the geometry shown in Fig. 4, the

interfacebetween the elements and the analytical regions

is vertical and i]= 180 ° at the entrance; thus, the

normal derivative can be simplified to

{ Is< ,s<
(3o)

Similar for the exit except i] = 0 so that the cos(t]) has

a value of +1.

Substituting Eqs. (29) and (30) into Eq. (28) yields

M

O=RI=
e=l

(,,wl.>

JS(*}f_S, I

S(, ) t_1Sb I "

(I = 1,2,3,...,N)
(31)

The gradient of the potential in Eq. (31) can be

evaluated directly from Eqs. (16] and (17) in terms of

the unknown amplitude coefficientsA- and B +.

To evaluate the integrals in Eq. (31), it is necessary

to represent _(x,y) locally. LetN] e),j = 1,2,3, be the

local linearshape functions for linear trimagular elements

associated with each corner node (Segerlind, 1976,

p. 29), so that

_(e}(xiy)---- N_e)(x,y)_b_ e} -b N_e)(xiy)_b_ e}

-t- N_e) (x,y) _b_e)

3

l_ij tx,y)q_j ----[N('i(x,y)]{¢(')}.

j=l

(32)

Next, implement the Galerkin method. When the global

index I equals the local node index i associated with

node (x!e),y!e)),let WI e} equal the local shape function

N! e}. The global shape function W I is assumed to be

identically zero for any element where node I does not

appear (simple pyramid weight approximation); thus,

the line integral in Eq. (28) vanishes unless node I is on

the boundary S.

The solution to Eq. (31) is obtained by performing

the usual element by element formation of the global

matrix as presented in introductory FE texts. The final

form of the global matrix equation is obtained by com-

bining the solution of Eq. (31) along with Eq. (22) and

the exit equivalent to Eq. (22).

[K] {¢} = {F}, (33)



where

{_}T = [Ao,AI,A:,...,AM,o J

*I,*,,..-,*N, B o,B1,BI,-",BM.oa] •
(s4)

F contains the free streaanvelocity terms present in

Eq. (22) and from the freestream velocityterms that

enterEq. (31) through the derivativesof _a and _ba.

The matrix K has the followinggeneralform

! I

A (11) I /1)(12) I 0

A (21) I _(22) I B (23)
....... 4- ........

0 [ _(32) I B (33)
! I

(35)

The top and bottom rows in the matrix representthe

contribution from Eq. (22) for the entrance and its

equivalent exitrepresentation.The middle row repre-

sentsthe contributionfrom Eq. (31).

The submatrix A (11)isa fullMcoef x Mcoef matrix

composed ofthe coefficientsofthe A m terms in Eq. (22)

which resulted in applying Eq. (18) at the entrance

interface.The submatrix _(12) is a sparse Mcoef x N

matrix composed of the coefficientsof _bI in Eq. (22).
The submatrices _(32) and B (33)axe similarin form

resultingfrom applying Eq. (18) at the exitinterface.

The submatrix A (21)isan N x Mcoef matrix com-

posed ofthe coefficientsof A m from the surfaceintegral

inEq. (31).For each boundary node, thereisa fullrow
ofterms in A (21).For interiornodes not on the bound-

ary,thereisa fullrow ofzerosin A (21)sincethe surface

integralinEq. (31)does not contributetothe difference

equation at the interiornodes.A similarinterpretation

appliesto B (23)._(22) is a sparse,highlybanded N × N

matrix composed of the coefficientsof_bIresultingfrom

the solutionof Eq. (31).Equation (33) issolved by a

standard frontalsolverprogram.

DirichletCondition

One additional constraint is required to keep the

matrix (Eq. (35)) nonsingular;namely the potential

must be givena value (grounded) atsome nodal location

inthe irmiteelement grid.For the purposesofthispaper,

@I = 0.0 at x = 0.0 y = 1.0 (36)

This conditionisnecessarybecausecomplete information

about the magnitude of the analyticalduct modes was

not passedtothe nodal differenceequations.Information

about the entrance conditionispassed to the f'miteele-

ment equations through the x derivativeof the analyti-

calsolutioninEq. (31).However, the magnitudes ofthe

lowestorderreflectedmode A o and lowest ordertrans-

mitted mode Bo+ are not passed into the modal differ-

ence ecgnationsbecause the normal derivativesof the
lowest order modes are identicalto zero.

In retrospect,Eq. (36)was not requiredin acoustics

and electromagneticapplicationsof the modal element

method discussedin the introduction.In theseapplica-

tions,the Helmholtz equation governs rather than the

Laplace equation.Consequently, the reflectedand trans-
mitted lowestordermodes areharmonic wave likefunc-

tions of x and derivativesexistfor all modes. Thus,

sufficientinformation is transmitted to the f'miteele-

ment equations to make them nonsingular.

Geometrical Model and Exact Solutions

The cylindrical like obstacle shown in Fig. 2 is

described by an inf'mite row of doublets in a uniform

stream. Here, the complex potential can be written as

(Kirchhoff, 1985)

W(z) = _(x,y) + i¢(x,y)= U+z + _coth|]z|k )

(37)

where

z = x + iy (38)

and where the notation has been modified to reflect the

nondimensionalization used herein. Using the identity

given in Abramowitz and Stegun (1964, p. 84), the

potential and stream function can be written as

¢ = U_x +
_b2U+. sinh(_x) (39)

2 cosh(,x) - cos(_y)

¢ = U:y -
Irb2U: sin(_ry) (40)

2 cosh(_x) - cos(_y)

In the examples to follow,

U: = 1.0 (41)



so that the value of the streamline along the upper wall

y = 1 is ¢ = 1 and the value of the streamline is ¢ = 0

along the lower wall and obstacle. Therefore, the height

of the obstacle y as a function of x is given by

0 = y - _b2 sin(xy) (42)

2 cosh(_rx) - cos(lry)

Equation (42) is solved numerically by the bisection
method for the height y of the obstacle as a function x

and as a function of the assumed strength of the dipole

parameter b. The following two values of b are used in

the examples of the next section:

b x o Yo

0.5642 0.5084 0.5000

1.9020 1.1552 0.9000

Recall that the extremes of the obstacle x o and Yo are

defined in Fig. 2. For b equals 0.5642 the obstacle

closely approximates a circular cylinder.

Equation (39)representstheexactanalyticalsolution

to which the approximate numerical analysiswillbe

compared graphicallyin the examples tofollow.In addi-

tion,the numericallydetermined modal coefficientsin

Eq. (16) can also be compared to the exact resultsin

Eq. (39)by equating both expressions:

Mcoef

Ao÷E
m=l

Am em¢(x-xin)cos(mcy)

_b _ sinh(¢x)

2 cosh(¢x)- cos( y)

(43)

The lowest order reflected mode A o can be easily deter-
mined by letting x go to negative infinity. Noting that

the higher order modes on the left-hand side go to zero

and the ratio of sinh to cosh is -1 at -% it follows

A- -- -_ _"b2 (43)
o 2

Thus, the lowest order potential acts with the opposite

polarity of the free stream potential and is proportional

to the square of the dipole strength.

The amplitude of the higher order modes can also be

determined using the series expansion (Gradshteyn and

Ryzhik, 1965, p. 42, Eq. (1.461), modified for x < 0)

sinh(Irx)

cosh(,x) - cos(,y)

---1 - 2 em eXcos(m_ry) (44)
m=l

x<O

Substituting Eq. (44) into Eq. (43), the exact expres-

sion forthemodalampntnaeAmcanbe expressedas

A- = -Trb 2 em_rxln (45)
m

Equations (43) and (45)can be used to compare the

exact results with the analytical approximations. A simi-

lar analysis applies to the B + modes. For this symmetri-

cal obstacle the B+mmodes are identical in magnitude to

the A m modes but of opposite sign.

For the examples to be consideredlater,the follow-

ing tabulated values give the exact amplitude of the

back reflectedpotentialA o and the higherorder cutoff

potentialmodes.

Example 1 Example 2

b = 0.5642 b = 1.9020

x o = -0.5084 x o = -1.1552

Xin = -0.5084 Xin = -1.3984

A o = -0.5000E+00 A o = -5.6825E+00

A_ = -0.2024E+00 A T = -0.1404E+00

A_ = -0.4099E-01 A_ = -0.1736E-02

A 3 = -0.8299E-02 A 3 = -0.2146E-04

A_ = -0.1680E-02 A-_ = -0.2652E-06

A s = -0.3401E-03 A_ = -0.3279E-08

A_ = -0.6887E-04 A_ = -0.4053E-10

As seen above, the amplitudes of the higher order

modes fall off rapidly with increasing m. Thus, the grid

density can be reasonably sparse in the transverse y
direction to resolve the important modes. Because the

grid was extended farther from the body in the second

example (Xin < Xo) , the modal element coefficients for
the higher order modes are smaller for this second exam-

ple. Of course, as the magnitude of Xin increases to very
large values, all the higher order modes will become neg-

ligible, so the grid density could be very sparse near the

end of the finite element grid in the neighborhood Xin.

However, the analysis also indicates that the finite ele-

ment grid density must still be increased at xo to what-
ever level of accuracy is desired to resolve the higher

order modes.



Results and Comparisons

To validate the method, two numerical experiments

are presented for potential flow over a cylinder like

obstacle described by Eq. (42). The first example con-

sidersan obstaclethat blocks50 percent ofthe channel

while the second example isconcerned with an obstacle

blocking 90 percentofthe channel. For the examples to

follow,recallthat the characteristiclength L# is set

equal to the height of the channel so that the channel

has a dimensionlessheight ofunity.The dimensionless

mean flow velocityis also assumed to be unity. The

parameter Mcoef specifyingthe number of modes in

Eq. (8)was taken to be 3 for a good comparison to the

exact solution.For problems without an exact solution,

the number ofmodes must be increasedtillthe results

converge. For example, in the acoustic application

shown in Fig. l(d),the number of modes required was

121.

Example 1.--Half Channel Obstruction

Consider the potentialflow over the cylinderwith a

b value of 0.5642,xo ---0.5082, and Yo = 0.5000. In

this example, the finiteelement region was placed

directlyover the obstacleasshown inFig. 4 so that the

end of the analyticaldomain xin coincideswith the

beginning of the obstacleat xo.As shown in Fig.4, the
finiteelement domain extendsfrom -0.5082 to 0.5082.

Thirteen nodes were used on the interfaceand eleven

nodes along the surfaceof the obstaclefor a totalof

143 nodes and 240 elements.

In Fig. 5, the velocity potential is plotted as a

function of x along the upper wall, y = 1. The dashed
line represents the potential on the duct wall without an

obstacle. The modal element solutions (hollow boxes)

are compared to the exact solution (solid line) given by

E<l. (39). In Fig. 5, for -0.5082 < x < 0.5082, the
values of potential at the finite element nodes axe used

to generate the solution. Here, eleven closely packed

nodal values are shown in Fig. 5.

Also in Fig. 5, the numerical solution is generated

from Eq. (16} using the numerically determined modal

coefficients A m for x < -0.5082 and B+mfor x > 0.5082.
The numerically calculated modal coefficients and the

exact coefficients are:

Numerical Solution Exact Solution

A o = -0.486E-00

AI- = -0.197E-00

A_ = -0.454E-01

A o -- -0.50002E-00

A T = -0.20247E-00

A 2 = -0.40994E-01

The numerically calculated and exact modal coefficients

are in reasonable agreement. Six separate values Of the

potential were calculated in each analytical region as

shown in Fig. 5. Clearly, the modal element method

gives good agreement with the numerical results.

A convergence check was made in this example by

increasing the number of vertical nodes to 25 and x
coordinate nodes to 21 for a total of 525 nodes and 960

elements. In this case, the numerically calculated modes
and the exact modes are

Numerical Solution Exact Solution

A o = -0.497E-00

A 1 = -0.202E-00

A_ = -0.446E-01

Ao = -0.50002E-00
AI = -0.20247E-00

A_ = -0.40994E-01

No improvement of the graphicalresultswas seen by

eye.Figure 6 shows the resultingcontour plotincluding

the analyticaland finiteelement regions.The dash line

inFig. 6 shows thestreamlines.There isgood agreement

between the exact and the modal element results.

The disagreement in the A_ modal amplitude was

believed to be a result of the highly skewed triangles

near the leading edge of the cylinder as shown in Fig. 3.

This simple grid system was chosen just to confine the

grid directly over the obstacle. In the next example with

90 percent channel blockage and a very steep slope near
the leading edge, a more conventional grid system is

employed. As will now be shown, the new grid system
will lead to good resolution of the highest order mode.

Example 2.--Large Channel Obstruction

Consider the potential flow over the cylinder with a

b value of 1.9020, xo = 1.1552, and Yo = 0.9000. In this
case, 90 percent of the channel has an obstruction as

illustrated in Fig. 7. The grid was extended slightly in
front of the obstacle to better resolve the steep slope of

the obstacle near xo. In this case, Xin = -1.3984 and

Xout ---- 1.3984. Twenty one nodes were used on the inter-
face and 132 nodes along the upper channel wall for a
total of 1272 nodes and 2212 elements, as shown in

Fig. 7.

In Fig. 8, the velocity potential is again plotted as a

function of x along the upper wall, y -- 1. The dashed

line again represents the potential on the duct wall with-
out an obstacle. The modal element solutions (hollow

boxes) are compared to the exact solution (solid line)

given by Eq. (39). In Fig. 8, for -1.3984 < x < 1.3984,
the values of potential at the finite element nodes are

used to generate the solution. In this case, the closely

packed nodM values are shown in Fig. 8.

Also in Fig. 8, the numerical solutionisgenerated

from Eq. (16)using the numerically determined modal

I0



coefficients A m for x < -1.3984 and B + for x > 1.3984.

The numerically calculated modal coefficients and the
exact coefficients are as follows:

Numerical Solution Exact Solution

A 0 = -0.567E+01

A_" ---0.140E-00

A T = -0.173E-02

A o = -0.56825E+01

A_ = -0.14048E-00

A-2 = -0.17364E-02

In thisexample, the numericallycalculatedand exact

modal coefficientsare in good agreement for allmodes

includingthe highestordermode. Six separatevaluesof

the potentialwere calculatedineach analyticalregionas

shown in Fig. 8. Clearly,the modal element method

again givesgood agreement with the numerical results.

Finally,Fig. 9 shows a contour plotofthe potential

insidethe finiteelement region while Fig. 10 shows a

contour plotincludingboth the analyticaland finiteele-

ment regions.The dash lineinFig. 10 shows the stream-

lines.Again, thereisgood agreement between the exact
and the modal element results.

The fast mode A o has increased from -0.5 to
-5.6825 or a factor of 10 increase in the magnitude of

the potential. This is a direct result of the larger
obstruction in the second example. In both cases the

gradient of the potential along the upper wall reaches
the free stream value once outside the obstacle because

of the quick decay of the higher order modes.

Concluding Remarks

The modal element method for potential flow over a

two-dimensional cylindrical like obstacle is presented.
The total flow domain is broken into three subdomains

that are patched together. The potential field is repre-

sented by a finite element solution in the irregular
subdomain next to the obstacle and by an exact eigen-

function expansion in the unbounded entrance and exit

ducts. The analytical and numerical solutions are

coupled by the continuity of potential and velocity
across the interface between the subdomains and are

calculated simultaneously from a single matrix equation.

The method is applicable to problems involving a com-

plete range of channel blockage.

The combined numerical and analytical results show

excellent agreement with the corresponding exact solu-
tions. For numerical insight, the analytical results indi-

cate the accuracy of the chosen exit boundary condition

and the grid density required for a given harmonic

accuracy near the obstacle (generally about 12 nodes per

wavelength are required to resolve a modal harmonic}.

For flow field insight, the analytical results indicate the

exact magnitude of the back potentialand the decay

ratesof the harmonics which blend the flow streamline

and the potentiallinesfrom about the obstacleinto the

uniform flow linesof the farfield.

Eigenfunction solutionsare applicable for a wide

range ofpracticalCFD problems inregionswhere viscos-

ity no longer dominates. Nevertheless,eigenfunction

solutionsdo not existformost CFD problems. For these

more complicatedproblems,a challengingand intriguing

aspect of the modal element approach could be to use a
finite series of known trial functions with unknown coef-

ficients A i. These trial functions would approximate the
physics, but not necessarily satisfy the governing differ-

ential equations. Meirovitch (1967) suggests using

admissible trial functions (satisfying geometric boundary

conditions} or comparison trial functions (satisfying
geometric and natural boundary conditions} for this

task. In these cases, additional constraints must be

applied to the coefficients A i so that differential equa-
tions are satisfied in the analytical region. Meirovitch

suggests that the collocation method is a practical

approach to this problem.

The long term goal or vision Of this research is to

(1) adapt the modal element method for greater analyti-
cal and numerical insight to a wider class of CFD prob-

lems and (2) decrease computational costs by reducing

the numerical grid.
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(a) Computational grid; Khan, Brown, Ahuja
transient difference.

radius of cylinder = 5 cm

(b) Computational gdd; model ring grid analysis.

Exact analysis ABS (p) Exact analysis
• Khan, Brown, Ahuja transient difference [] Numerical solution

[] Modal ring grid analysis

0 0

(c) Compadson of Numerical Approaches k # = (d) Application of model ring grid to high frequency
0.182 cm -1 radius of cylinders = 5 cm, k#r # = 1.08. scattering kr = 150, 2904 nodes.

Figure 1.--Application of modal element methods in acoustic scattering from a hard circular cylinder.
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Figure 2.--Flow field geometry.

T
h=l

Xin Xo Xout

Figure 3.---Conventional finite element discretization for flow around

cylindrical object in channel.

Couple analytical
and numerical

solutions at interfaces

Boundary element

Interfacial I r- S I
boundary Sa-" _ I / I /-- Interfacial

" / boundary S b
\, ,. /

Region a _ Analytical outlet region b

x o Xout

Figure 4.--Modal element finite element discretization for flow around cylindrical object
in channel.
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*_a_ 0 -- A4_ \_ Potential
"6
n .-_rO _ without

_.-'r_,, ,'C_ obstacle

_4 I I I I I I
-3 -2 -1 0 1 2 3

x axial coordinate

Figure 5.--Effect of a half channel obstruction on the potential

along the upper wall (143 nodes and 240 elements).

Exact analysis

D, etc Numerical solution

Figure 6.--Contour plots of the potential in both the finite element region and the

analytical regions for the half channel obstruction (525 nodes and 960 elements).

Xin Xo Xout

Figure 7.--Modal element finite element dlscretization for flow around large cylindrical object
in channel.
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Figure 8.--Effect of a large channel obstruction on the potential
along the upper wall (1272 nodes and 2212 elements).

Exact analysis
Numerical solution

I I I
0

Shape of boundaw

1 2

Figure 9.--Contour plots of the potential in the finite element
region for the channel obstruction.

Exact analysis
17, etc Numerical solution

Figure lO.--Contour plots of the potential in both the finite element region
and the analytical regions for the half channel obstruction (1272 nodes and
2212 elements).
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